Co-Evolutionary Algorithms Based on Mixed Strategy
نویسندگان
چکیده
Inspired by evolutionary game theory, this paper modifies previous mixed strategy framework, adding a new mutation operator and extending to crossover operation, and proposes co-evolutionary algorithms based on mixed crossover and/or mutation strategy. The mixed mutation strategy set consists of Gaussian, Cauchy, Levy, single point and differential mutation operators; the mixed crossover strategy set consists of cuboid, two-points and heuristic crossover operators. The novel algorithms automatically select crossover and/or mutation operators from a given mixed strategy set, and improve the evolutionary performance by dynamically utilizing the most effective operator at different stages of evolution. The proposed algorithms are tested on a set of 21 benchmark problems. The results show that the new mixed strategies perform equally well or better than the best of the previous evolutionary methods for all of the benchmark problems. The proposed MMCGA has shown significant superiority over others.
منابع مشابه
An Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملEvaluation of Sorbitol-Methanol Co-Feeding Strategy on Production of Recombinant Human Growth Hormone in Pichia Pastoris
Recombinant protein production in Pichia pastoris is based on alcohol oxidase promoterswhich are regulated by methanol. However, the use of methanol has several disadvantages,which is why current trends in bioprocess development with Pichia pastoris (P. pastoris) arefocusing on methanol mixed feeding strategies. This work aimed to develop a new experimentalmethod and compare the effect of vario...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JITR
دوره 4 شماره
صفحات -
تاریخ انتشار 2011